Long-term Wind Measurement in Philippines

Quantum Leap in Wind Philippines Wind Energy Stakeholders Meeting Asian Development Bank

October 11, 2012

Agenda

- QLW goals
- Wind Roadmap
- Philippine Wind Industry Assessment Study
- Long-term wind measurement
- Met-tower size
- Criteria for site selection
- Local institution to take over the wind measurement project

ADB Quantum Leap in Wind (QLW) in Asia and the Pacific Objectives:

1. Access to clean and affordable energy

- $\circ~$ Reach more than 5 million people
- Target 1 GW wind in Asia (excluding PRC and India) in 5 years
- $\,\circ\,\,$ 2 million tons per year reduction in CO2

2. Promote and build capacity for wind and other renewable energy

 Expanding to Asia Pacific market will encourage competition and technological innovation

QLW - **MONGOLIA, PHILIPPINES**, SRI LANKA, VIETNAM DURATION: 3 Years, 2012-2014, Components

1. Wind Energy Development Roadmaps (200K)

country-level roadmaps in partnership with stakeholders

2. Wind Resource Assessment (900K)

ground-based wind measurements for long term reference

3. Knowledge Management and Capacity Building (500K)

 in-country, regional and international workshops to share lessons and good cases of wind development, including technical courses

4. Pre-feasibility Studies and Economic Analysis (200K)

study of key issues to help remove barriers to project development

5. Business/financial models and contracts (200K)

 development of agreed "standard" business/financial models for assessing bankability of wind projects.

Wind Energy Roadmap

- Considers national policy targets and all electricity-generation resources
- Public and private sector stakeholders cooperate and collaborate
 - Spearheaded by lead government ministry
 - Consultative process to ensure sustainability
- Continuing process
 Implement & update

Key Roadmap Objectives

- Identify issues and barriers
 - Policy
 - Resource assessment & development
 - Technical & technological
 - Infrastructure
 - Financing
 - Social acceptability
- Develop an action plan in line with national policy
 - Targets
 - Timeline

National Renewable Energy Program (NREP) – Wind Sub-program

- Targets:
 - 1,048 MW by 2015
 - 2,345 MW by 2030
- Technology
 - Resource Assessment
 - Wind database
 - Smart Grid Demo
- Commercial
 - Local manufacturing
- Promotions
 - Linkages with academe
 - Public awareness

• Policy

- True cost of conventional energy
- Land use bill
- Area-Based Energy Component
 - Decentralized,
 community based
 approach

Updating the Wind Roadmap

- Re-assess targets for wind capacity
 - FiT Installation targets, surrendered RESCs, RA
- Review assumptions:
 - Enabling mechanisms still being formulated
- Establish a One-Stop-Action-Center
- Grid study for wind/RE penetration
- National infrastructure in support of RE
- Special window facility
 - Pre-FS to construction
 - System reliability improvement
- Focus on targeting and implementation

Third Party Assessment of the Philippine Wind Industry

- Activity was requested by DOE
- QLW will engage a consultant to:
 - Consult with wind stakeholders
 - Review relevant laws and rules
 - Identify the challenges and barriers
 - Recommend solutions
 - Present result with stakeholders
- Important input to the Philippine Wind Roadmap

Role of Long-term Measurement in WRA

Uncertainty in AEP due to Longterm reference dataset

Component of Uncertainty	Sensitivity Factor	Amount of Uncertainty (%)	Net Uncertainty of AEP Because of Component (%)
Wind speed measurement	1.5	5	7.5
Wind speed spatial extrapolation	1.5	3	4.5
Wind speed long-term correction	1.5	3	4.5
Wind shear, height extrapolation	1.5	2	3
Air density	1	0.3	0.3
Power curve	1	0.6	0.6
Wake losses in wind farm	1	1.7	1.7
Unaccounted for Loss	1	1	1
Total uncertainty of AEP assuming components are uncorrelated is square root of sum of squares			10.5%

Illustration of P50, P84, P90

P84 is an Annual Energy Production number with the following property: There is a 84% likelihood (probability) that energy production will be at least 90GWh. Assuming: Average AEP=100GWh, uncertainty is 10%

Value of Long-term Data

- Allows developers to:
 - Compute accurate energy production over the entire life of project (20 years)
 - Reduce duration of measurement from say 3 years to one year
- Allows financiers to decrease uncertainty, thereby increase the valuation of wind project
 - Allows bankers to increase % of loan, because DSCR is higher
 - Allows equity investors to increase ROE

Properties of Long-term Data

- For long-term data to be useful
 - High quality data with no "holes", with high quality instruments, with redundant measurements
 - Correlation with concurrently measured wind data must be high
 - Duration of long-term data must be longer, and measurement must be continuous

Met-tower Height for Long-term Measurement

- Evaluated 40m, 60m, 80m and 100m
- Settled on 60m, reasons:
 - Tower cost of 100m is 3 times the cost of 60m
 - Can deploy larger number of 60m met-masts
 - Correlation between 60m and 100m data is very high
 - Shear is much more local, so if shear modeling is a big issue, then onsite measurement should use higher met-tower

Criteria for Selecting Sites for Wind Measurement

- Must benefit multiple projects; cannot be tied to a single project
 - Clusters of existing wind service contracts
- It must cover an area with high wind energy potential
 - Wind potential
 - Existing data (start with what DOE has and summary data that developers will be willing to provide)
- Close to consumption center
 - Dedicated market/off taker
 - Availability of cellular phone signal
- Close to grid, roads
 - Availability/proximity of current and future transmission access
 - Accessibility of site (i.e. public land; not forest land or in water bodies)
- Security of the site

Existing Measurement Data

- Important for QLW to get locations of past and current measurements
 - QLW wants to use the most updated wind resource information to choose sites
- Request: Share aggregate measurement wind data with QLW
- QLW does not have locations of DOE or private measurements
 - Have locations of project sites that have received pre-development license

Proposed Location of Met-Towers for Long-Term Measurement

Conditions Associated with Wind Data

- Data will be public, there may be a nominal fee to get raw data
- After the QLW project, want a local agency to:
 - Own the met-tower
 - Maintain the met-tower
 - Own the data
 - Manage the data
 - Become the repository of knowledge
 - Manage detailed wind resource modeling
 - Updating wind resource maps

Options for Institution to Own Longterm Measurement Campaign

- Research center at university, with faculty and graduate student participation
 - Asian Institute of Management
 - Ateneo Manila Observatory
 - University of Asia and the Pacific
 - University of the Philippines
- Government
 - DOE
 - PAGASA
- Private sector
 - NGO
 - WEDAP

Characteristics of Successful Institution

- Sufficient budget for long-term (after QLW):
 - Maintaining met-tower:
 - Replacing faulty sensors, datalogger, etc.
 - Maintaining spares
 - Tightening guy wires
 - Replacing guys wires and booms when necessary
 - Doing necessary repairs after an extreme weather event
 - Operations :
 - Cost of communications
 - Cost of personnel, vehicles
 - Data management
 - Software, training, personnel
 - Wind resource assessment
 - Software, training, personnel
- Independent RE agency:
 - Work in partnership with DOE
 - Mandate to promote wind energy
 - Repository of data, best practices, training and research

Open Discussions

- Measurement locations
- Institution for managing long-term wind data
- Implementation Issues

Invitation to Policy Brownbag

- Why does wind energy development policy fail? What are lessons to learn from countries with successful wind energy policies?
 - Audience: Policy makers and government officials
 - Presented by Pramod Jain
 - Oct 12, 2012 at 10AM at ADB Room 4653

Thank you !

Contact details for more information

Carlo Borlaza, Consultant

Regional and Sustainable Development Department Address: 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines

Direct Line +63 2 632 4444 loc 70876 Cell phone + 63 917 805 3460 Email: cborlaza.consultant@adb.org Web www.adb.org Download: http://i-windenergy.com/QLW-Philippines