Update on Wind Energy Developments in Thailand

Twarath Sutabutr, Sc.D
Deputy Director-General
Department of Alternative Energy Development and Efficiency
Ministry of Energy, Thailand

Quantum Leap in Wind
4-5 June 2012
ADB, Manila, Philippines
1. Latest version of Thailand’s master plan on renewable energy (AEDP 25 % within 10 years)

2. Status and Targets
 - Wind Map (2010 version)
 - Noteable Demonstration Projects

3. Wind Farms Under Construction

4. Incentives, Obstructions and Way Forwards

5. Summary and Key Takeaways
Committed to the development of low-carbon society

10 years Alternative Energy Development Plan (AEDP-Master Plan 2012-2021)

Target 25% of RE in Total Energy Consumption By 2021

RE for Power generation = 9,201 MW
Generally, wind is light in Thailand

- Annual mean wind speeds are about 4-5 m/s or less.
- Wind usually blows during the evening and calm in the morning.
- Controlled by “Monsoon” and “NE-SW jet stream”.
- May-July (SW direction) and Nov-Jan (NE direction) are the periods of which Monsoons are in full strength.
- Aug-Oct wind are highly variable due to the Inter-tropical Convergence Zone (ITCZ) move southward over Thailand.
- Feb-Apr is the period when trade wind prevails from east, wind is consistent, but it is rather light.
Wind Energy

2012 Installed Wind Power = 7.28 MW
Targeted in 2021 → 1,200 MW

Proposals to Invest (as of May 2012)
- SPP (10-90 MW) = 1,606.1 MW
- VSPP (<10 MW) = 36.25 MW
Thai Wind Maps & Ground Stations

- 23 Wind stations at 90 m height
- 45 Wind stations at 40 m height
- Micro scale wind map: 200X200 meter (on process)
- Zones
NOTABLE DEMONSTRATION PROJECTS
1. 250 kW-Demonstration Project (India WTG)

Objective
To demonstrate in the power generation from the wind turbine generator and encourage the use of renewable energy.

Purpose and outcome
Install the WTG 250 kW which can be estimated the produced energy 0.3 Gwh per year or about 1.8 M per year.

Specification
WTG Shriram EPC(SHPC) 250 kW is made in India that has three blades, 28.5 m. diameter and hub height 50 m.

Period
Start on August, 8, 2006 and finished on May, 13, 2008. Sell electricity to PEA on December, 15, 2008

Budget
18,500,000.-

Output
Ave monthly production = 14,208 kWh
Objective
To demonstrate in the power generation from the wind turbine generator and encourage the use of renewable energy.

Purpose and outcome
Install the WTG 1.5 MW which can be estimated the produced energy 1.8 Gwh per year or about 10 M per year.

Specification
WTG : CPC 1.5 MW. model NEWUNITE is made in China that has three blades, 77 m. diameter and hub height 80 m.

Period
Begin work on a contract: September 28, 2007
Sell electricity to PEA on June 8, 2009

Budget
113,500,000.-

Output
Ave monthly production = kWh.
3. 1.5 MW Demonstration Project (Gearless)

| Objective | To demonstrate in the power generation from the wind turbine generator and encourage the use of renewable energy. |
| Purpose and outcome | - Install the WTG 1500 kW which can be estimated the produced energy 2000 Gwh per year.
- To improve the quality of the line voltage to the end user.
- To develop the skill of PEA staff. |
| Specification | Model: Leitwind and made in India
Rated Power: 1.5 MW
Blade length: 37 M
Hub height: 80 M
Cut in wind speed: 3 m/s
Rated wind speed: 11.5 m/s |
| Budget | 129.6 M |
| Output | Ave monthly production = 98000 kWh. |
4. Low-Speed WTG: Vertical vs. Horizontal Design
Obstructions

- Land: permission on some sensitive areas
- Wind speed: low to medium
- Transmission and substations: experiencing some bottlenecks
- Technology: Available technology is not suitable for local wind conditions (low-speed & effect of monsoon)
More R&D

• More focus on **Small wind energy** for community &

• Wind turbine for **agricultural usage** such as water pumping, water aeration etc.

More Gov. Demonstration Projects

• By EGAT (191MW by 2030) & PEA (island projects)
EGAT’s Renewable Energy Demonstration Plan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroelectric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumped Storage</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>(1 Project)</td>
<td>1 Project</td>
<td></td>
<td>-</td>
<td>1 Project</td>
</tr>
<tr>
<td>Dam</td>
<td>104.5</td>
<td>52.6</td>
<td>42</td>
<td>199.1</td>
</tr>
<tr>
<td>(Projects)</td>
<td>10 Projects</td>
<td>(Projects)</td>
<td>34 Projects</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>21</td>
<td>50</td>
<td>120</td>
<td>191</td>
</tr>
<tr>
<td>(Projects)</td>
<td>10 Projects</td>
<td>(Projects)</td>
<td>34 Projects</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>5.5</td>
<td>0.5</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>(2 Projects)</td>
<td>1 Project</td>
<td>7 Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Solid Waste</td>
<td>-</td>
<td>3.75</td>
<td>15</td>
<td>18.75</td>
</tr>
<tr>
<td>(Projects)</td>
<td>1 Project</td>
<td>5 Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
<td>606.85</td>
<td>217</td>
<td>954.9</td>
</tr>
</tbody>
</table>

Unit: MW
Thailand’s current ACHIEVEMENTS on WIND

- Long term efforts in wind promotion since 1974
- Wind installed capacity 7.3MW (in 2011), projects ongoing in EGAT, PEA and Private sectors (SPP or VSPP)
- Target expanded from 800MW to 1,200MW
- Target setting based on renewable energy potential
- Adder rate 3.5 Baht/kWh and 4.5 Bt/kWh for small turbine, stability in supporting scheme
Thailand On-going ACTIONS on Wind

- Accelerate transmission capacity enhancement as a mid and long term challenge to cooperate with the development of renewables, esp. Wind Projects
- Continue to develop technical capabilities both in government, academia and industry
- Look for international cooperation for further study and R&D, especially on **Low Wind Speed and Offshore (GoT) Wind Potential**
DEDE: Knowledge Base organisation and sustainable development Centre of RE and EE